Construa as retas no plano cartesiano que contém as soluções dos sistemas de equações

A equação geral da reta é estudada na geometria analítica, que busca traduzir, por meio de uma equação, o comportamento de algumas figuras geométricas quando representadas no plano cartesiano, entre elas a reta. A equação geral da reta é uma maneira de descrever o comportamento da reta de forma algébrica.

Para encontrar a equação geral da reta, conhecendo dois pontos da reta, calculamos o determinante da matriz que tem como linha as coordenadas desses pontos e igualamos a zero. Ao calcular esse determinante, encontramos a equação geral da reta. O gráfico de uma reta, quando representado no plano cartesiano, pode ser crescente ou decrescente. A equação geral da reta é: ax + by + c = 0.

Leia também: Como calcular a distância entre dois pontos no plano cartesiano

Resumo sobre a equação geral da reta

  • É uma forma de descrever a reta algebricamente.
  • É a equação ax + by + c = 0.
  • Para encontrá-la conhecendo os pontos A(xA, yA) e B(xB, yB), calculamos o determinante:

\(\left|\begin{matrix}x_A&y_A&1\\x_B&y_B&1\\x&y&1\\\end{matrix}\right|\ =\ 0\ \)

Afinal, qual é a equação geral da reta?

A equação geral da reta é a que descreve, de forma algébrica, o comportamento da reta quando ela é representada no plano cartesiano. Dado os pontos (x, y), esses pontos pertencem à reta se respeitarem a equação geral da reta:

\(ax\ +\ by\ +\ c\ =\ 0\)

Exemplos:

  • \( 2x+3y\ –10=0\)
  • \( -x+y+4=0\)
  • \( 2x+3y=0\)

Conhecendo as coordenadas de dois pontos A(xA, yA) e B(xB, yB) pertencentes à reta, podemos então encontrar a equação geral da reta calculando o determinante:

\(\left|\begin{matrix}x_A&y_A&1\\x_B&y_B&1\\x&y&1\\\end{matrix}\right|=0\ \)

Exemplo 1:

Encontre a equação da reta que passa pelos pontos A(2, 4) e B(3, 7).

Resolução:

Calculando o determinante e igualando ele a zero, temos que:

\(\left|\begin{matrix}2&4&1\\3&7&1\\x&y&1\\\end{matrix}\right|=0\)

\(2\cdot7\cdot1+4\cdot1\cdot x+1\cdot3\cdot y-1\cdot7\cdot x-2\cdot1\cdot y-4\cdot3\cdot1=0\)

\(14+4x+3y-7x-2y-12=0\)

Então a equação geral da reta é:

\(-3x+y+2=0\)

Exemplo 2:

Analise a reta apresentada no plano cartesiano a seguir:

Encontre a equação da reta r.

Resolução:

Analisando o gráfico, podemos destacar os pontos A(2, 1) e B(5, 4). Então calcularemos o determinante igualado a zero:

\(\left|\begin{matrix}2&1&1\\5&4&1\\x&y&1\\\end{matrix}\right|=0\)

\(2\cdot4\cdot1+1\cdot1\cdot x+1\cdot5\cdot y-1\cdot4\cdot x-2\cdot1\cdot y-1\cdot5\cdot1=0\)

\(8+x+5y-4x-2y-5=0\)

\(-3x+3y+3=0\)

Note que todos os termos são múltiplos de 3, logo, podemos dividir todos os elementos por 3, encontrando a equação geral da reta:

\(-x+y+1=0\)

Gráfico da equação geral da reta

Para encontrar o gráfico da equação de determinada reta, é necessário encontrar dois pontos. Ao marcar os dois pontos no plano cartesiano, pode-se fazer o esboço do gráfico da equação traçando a reta que passa por esses dois pontos. Vejamos um exemplo a seguir.

Exemplo:

Construa o gráfico da reta que tem equação geral 2x + y – 1 = 0.

Resolução:

Conhecendo a equação da reta, para representá-la no gráfico, basta encontrarmos dois pontos pertencentes a essa equação. Atribuiremos um valor numérico qualquer para x e encontraremos o seu correspondente em y.

Seja x = 1, temos que:

\(2x+y\ –1=0 \)

\(2\cdot1+y-1=0\ \)

\(2+y-1=0\)

\(y+1=0\ \)

\(y=-1\)

Então sabemos que o ponto A(1, -1) pertence à reta. Agora, vamos atribuir outro valor qualquer para o x e encontrar um segundo ponto pertencente à reta.

Seja x = 0, temos que:

\(2x+y\ –1=0 \)

\(2\cdot0+y\ –1=0 \)

\(y\ –1=0 \)

\(y=1\ \) 

Desse modo, o ponto B(0, 1) também pertence à reta.

Agora, marcaremos esses dois pontos no plano cartesiano e traçaremos a reta que passa por eles.

Exercícios resolvidos sobre a equação geral da reta

Questão 1

A equação geral da reta que passa pelos pontos A(2, 1) e B(4, 7) é:

A) 3x + 2y – 5 = 0

B) x + 2y – 10 = 0

C) 6x + y + 10 = 0

D) -3x + y + 5 = 0

E) 3x – y – 5 = 0

Resolução:

Alternativa D

Dados os pontos A e B, calcularemos o determinante, e, igualando-o a zero, temos que:

\(\left|\begin{matrix}2&1&1\\4&7&1\\x&y&1\\\end{matrix}\right|\ =\ 0\)

\(2\cdot7\cdot1+1\cdot1\cdot x+1\cdot4\cdot y-1\cdot7\cdot x-2\cdot1\cdot y-1\cdot4\cdot1=0\)

\(14+x+4y-7x-2y-4=0\)

\(-6x+2y+10=0\)

Note que todos os termos são múltiplos de 2, dividindo toda a equação por 2, temos que:

\(-3x+y+5=0\)

Questão 2

Analise a equação geral da reta \(4x+y-5=0\). São pontos pertencente à reta:

A) (2, 0)

B) (3, -3)

C) (1, -1)

D) (-1, 9)

E) (0, -5)

Resolução:

Alternativa D

Para verificar se o ponto pertence à equação, vamos substituir o valor de x e de y e verificar se a equação é verdadeira:

A) (falsa) \(2\cdot2+0-5=4-5=-1\)

B) (falsa) \(4\cdot3+3-5=12-2=10\)

C) (falsa) \(4\cdot1-1-5=0-5=-5\)

D) (verdadeira) \(4\cdot\left(-1\right)+9-5=-4+9-5=0\)

E) (falsa) \(4\cdot0-5-5=0-5-5=-10\)

A equação geral da reta é uma maneira algébrica de se estudar o comportamento de uma reta no plano cartesiano. Na geometria analítica, estudamos a fundo objetos da geometria plana representados no plano cartesiano. Um desses objetos é a reta, que pode ter seu comportamento descrito pela equação ax + by + c = 0, os coeficientes a, b e c são todos números reais, em que a e b são diferentes de zero.

Para encontrar a equação geral da reta, é necessário conhecer pelo menos dois pontos pertencentes a essa reta. Conhecendo os dois pontos da reta, existem dois métodos distintos para se encontrar a equação geral da reta. Além da equação geral da reta, existem outras que podem descrever esse comportamento, sendo elas a equação reduzida da reta e a equação segmentária da reta.

Leia também: O que é um par ordenado?

Passo a passo para encontrar a equação geral da reta

Construa as retas no plano cartesiano que contém as soluções dos sistemas de equações
Representação da reta no plano cartesiano.

Para encontrarmos a equação geral da reta, existem dois métodos, um deles utiliza a equação reduzida da reta para chegar-se à equação geral, já o outro é o cálculo do determinante de ordem 3, em ambos os métodos, é necessário conhecer, pelo menos, dois pontos da reta.

Antes de compreender como encontrar a equação da reta geral, veja alguns exemplos.

Exemplo de equação geral da reta:

a) – 3x + 4y + 7 = 0

b) x + y – 3 = 0

c) 2x – 5y  = 0

Então, para encontrar a equação geral de uma reta, é necessário conhecer dois pontos dessa reta. Seja A(xA, yA) e B(xB, yB) dois pontos pertencentes à reta cujos valores das coordenadas são conhecidos, para encontrar a equação geral da reta, podemos seguir alguns passos ao definirmos o método que será utilizado.

Para encontrar a equação geral da reta, utilizaremos duas fórmulas:

Em que (xp, yp) é um dos pontos que conhecemos.

Exemplo:

A(2,1) e B(5,7)

1º passo: encontrar o coeficiente angular m.

2º passo: escolher um dos pontos e substituir os valores de m e desse ponto na equação, igualando-a a zero.

y – yp = m (x – xp)

Sabendo que m = 2, e escolhendo o ponto A(2,1), temos que:

y – 1 = 2 (x – 2)

y – 1 = 2x – 4

y – 2x – 1 + 4 = 0

– 2x + y  + 3 = 0 → equação geral da reta r.

Veja também: Como calcular a distância entre dois pontos no espaço?

Vamos construir a matriz com os dois pontos que conhecemos: os valores A(xA, yA), B(xB, yB) e um ponto arbitrário, e C (x,y).

1º passo: montar a matriz.

2º passo: resolver a equação det(M) = 0.

Para que os pontos estejam alinhados, o valor do determinante da matriz tem que ser igual a zero, por isso, igualamos o determinante da matriz M a zero.

Exemplo:

Utilizando os pontos do exemplo anterior, encontraremos a equação geral da reta.

A(2,1), B(5,7) e C(x,y)

Primeiro vamos montar a matriz:

Agora calcularemos o seu determinante:

det(M) = 14 + x + 5y – 7x – 5 – 2y = 0

det(M) = 3y – 5x + 9 = 0

Note que essa é a equação de uma reta, sendo assim, a equação geral da reta que passa pelos pontos A, B e C é – 5x + 3y  + 9 = 0.

Equação reduzida da reta

Outra forma de representar a equação da reta é a equação reduzida. A diferença da equação geral para a equação reduzida é que, na equação geral, o segundo membro é sempre igual a zero, agora, na equação reduzida, vamos sempre isolar o y no primeiro membro. A equação reduzida da reta é sempre descrita por y = mx + n, em que m e n são números reais, com m diferente de zero.

Conhecendo a equação geral da reta, é possível encontrar a reduzida apenas isolando o y.

Exemplo:

– 5x + 3y + 9 = 0

Vamos isolar o y no primeiro membro:

Toda reta pode ser representada por uma equação geral e por uma equação reduzida. Muitas vezes a equação reduzida é mais interessante. Já que o m é conhecido como coeficiente angular,  com base nele é possível obter-se informações importantes da reta, pois seu valor traz informações sobre a inclinação dela. Já o n é o coeficiente linear, que é o ponto no plano cartesiano em que a reta corta o eixo y.

Equação segmentária da reta

Assim como a equação geral e a equação reduzida da reta, a equação segmentária é uma maneira de representar a equação da reta. A equação segmentária tem esse nome porque ela nos informa os pontos em que a reta intercepta os eixos x e y. A equação segmentária da reta é descrita por:

Exemplo:

Encontre a equação segmentária da reta -5x + 3y – 9 = 0.

Vamos isolar o termo independente 9 no segundo membro:

-5x + 3y = 9

Agora vamos dividir toda a equação por 9:

Agora vamos reescrever cada um dos termos colocando c/a e c/b.

Acesse também: Qual é a equação geral da circunferência?

Exercícios resolvidos

Questão 1 – A representação da equação 4x – 2y – 6 = 0, em sua forma reduzida, é:

A) y = 2x – 3 B) y = -2x + 3 C) y = 2x + 3 D) y = -2x – 3

E) 2y = 4x – 6

Resolução

Alternativa A

Primeiro vamos isolar o y:

-2y = -4x + 6, como o coeficiente de y é negativo, multiplicaremos a equação por -1.

2y = 4x – 6, dividindo todos os termos por 2, encontraremos a equação reduzida.

y = 2x – 3

Questão 2 – A equação geral da reta representada no plano cartesiano é:

A) 2x + 2y – 6 = 0 B) x + y – 9 = 0 C) 2x – y + 3 = 0 D) -2x + y + 3 = 0

E) x + 2y – 3 = 0

Resolução

Alternativa D

Primeiro vamos identificar os dois pontos, são eles A(2,1) e B(3,3). Seja P(x,y) um ponto qualquer da reta, devemos calcular o determinante da matriz M e igualar a zero, colocando em cada linha o valor de x, y e 1.

det(M) = 6 + x + 3y – 3x – 3 – 2y = 0

det(M) = -2x + y + 3 = 0