Which option is not typically a product of biosynthesis?

  1. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: technologies and applications. Nat. Methods 11, 499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heather, J. M. & Chain, B. The sequence of sequencers: the history of sequencing DNA. Genomics 107, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Majors, R. E. Historical developments in HPLC and UHPLC column technology: the past 25 years. LCGC North Am. 33, 818–840 (2015).

  5. Li, Y. et al. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl Acad. Sci. USA 115, E3922–E3931 (2018). This paper is the longest known example of a plant biosynthetic pathway reconstructed in a heterologous host, as well as an example of using PNP-producing platforms for producing unnatural PNPs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones, J. A. & Koffas, M. A. G. Optimizing metabolic pathways for the improved production of natural products. Methods Enzym. 575, 179–193 (2016).

    Article  CAS  Google Scholar 

  7. Espinosa-Leal, C. A., Puente-Garza, C. A. & García-Lara, S. In vitro plant tissue culture: means for production of biological active compounds. Planta 248, 1–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lau, W. & Sattely, E. S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349, 1224–1228 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeon, J-E. et al. A pathogen-responsive gene cluster for the production of highly modified fatty acids in tomato. Preprint at https://doi.org/10.1101/408518 (2018).

  10. Demain, A. L. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52, 455–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Wendisch, V. F., Jorge, J. M. P., Pérez-García, F. & Sgobba, E. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J. Microbiol. Biotechnol. 32, 105 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Wolf, K. Nonconventional Yeasts in Biotechnology. (Springer, Berlin, 1996).

  13. Tsuruta, H. et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4, e4489 (2009).

  14. Paddon, C. J. & Keasling, J. D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Mizrachi, D. et al. A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo. Nat. Chem. Biol. 13, 1022–1028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammer, S. K. & Avalos, J. L. Harnessing yeast organelles for metabolic engineering. Nat. Chem. Biol. 13, 823–832 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Ajikumar, P. K. et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang, Z., Jones, J. A., Zhou, J. & Koffas, M. A. G. Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotech. J. 13, 1700576 (2018).

    Article  CAS  Google Scholar 

  19. Jones, J. A. et al. Complete biosynthesis of anthocyanins using E. coli polycultures. mBio 8, e00621-17 (2017).

  20. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl Acad. Sci. USA 105, 7393–7398 (2008).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Camacho-Zaragoza, J. M. et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell Fact. 15, 163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trenchard, I. J., Siddiqui, M. S., Thodey, K. & Smolke, C. D. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab. Eng. 31, 74–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeLoache, W. C. et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11, 465–471 (2015). This paper is an example of applying biosensor-based screening methods to engineering the production of the key BIA branchpoint alkaloid reticuline.

    Article  CAS  PubMed  Google Scholar 

  24. Hadadi, N., Hafner, J., Shajkofci, A., Zisaki, A. & Hatzimanikatis, V. ATLAS of biochemistry: A repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 5, 1155–1166 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Xiao, M. et al. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166, 122–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, S., Clastre, M., Courdavault, V. & O’Connor, S. E. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc. Natl Acad. Sci. USA 112, 3205–3210 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tai, Y.-S. et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat. Chem. Biol. 12, 247–253 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonovsky, N. et al. Sugar synthesis from CO2 in Escherichia coli. Cell 166, 115–125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xue, Y. & He, Q. Cyanobacteria as cell factories to produce plant secondary metabolites. Front. Bioeng. Biotechnol. 3, 57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yishai, O., Lindner, S. N., de la Cruz, J. G., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr. Opin. Chem. Biol. 35, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Whitaker, W. B. et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab. Eng. 39, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Meadows, A. L. et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694–697 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Rodriguez, A., Kildegaard, K. R., Li, M., Borodina, I. & Nielsen, J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng. 31, 181–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558.e14 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Blount, B. A. et al. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat. Commun. 9, 1932 (2018). This paper is the first known example of engineering host metabolism through use of inducible chromosome recombination synthetic biology tools.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 42, D459–D471 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, L., Dash, S., Ng, C. Y. & Maranas, C. D. A review of computational tools for design and reconstruction of metabolic pathways. Synth. Syst. Biotechnol. 2, 243–252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Delépine, B., Duigou, T., Carbonell, P. & Faulon, J.-L. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Fehér, T. et al. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol. J. 9, 1446–1457 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Hadadi, N. & Hatzimanikatis, V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28, 99–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Casini, A. et al. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J. Am. Chem. Soc. 140, 4302–4316 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Ellerbrock, P., Armanino, N., Ilg, M. K., Webster, R. & Trauner, D. An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat. Chem. 7, 879–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blin, K. et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36–W41 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Kautsar, S. A., Suarez Duran, H. G., Blin, K., Osbourn, A. & Medema, M. H. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res. 45, W55–W63 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience 3, 17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu, X. et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat. Commun. 9, 448 (2018). This paper is an example of the de novo biosynthesis of medicinal alkaloids and demonstrates the application of PNP platform strains for enzyme discovery.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagashima, S., Hirotani, M. & Yoshikawa, T. Purification and characterization of UDP-glucuronate: baicalein 7-O-glucuronosyltransferase from Scutellaria baicalensis Georgi. cell suspension cultures. Phytochemistry 53, 533–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Farrow, S. C., Hagel, J. M., Beaudoin, G. A. W., Burns, D. C. & Facchini, P. J. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat. Chem. Biol. 11, 728–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Winzer, T. et al. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349, 309–312 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015). This paper is the first known example of the complete biosynthesis of opioids in yeast and demonstrates the application of PNP platform strains for enzyme discovery.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caputi, L. et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360, 1235–1239 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Chen, X. et al. A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nat. Chem. Biol. 14, 738–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Hsu, T. M. et al. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256–261 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lenz, R. & Zenk, M. H. Acetyl coenzyme A: salutaridinol-7-O-acetyltransferase from papaver somniferum plant cell cultures. The enzyme catalyzing the formation of thebaine in morphine biosynthesis. J. Biol. Chem. 270, 31091–31096 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Barton, D. H. R., Bhakuni, D. S., James, R. & Kirby, G. W. Phenol oxidation and biosynthesis. Part XII. Stereochemical studies related to the biosynthesis of the morphine alkaloids. J. Chem. Soc. C: Organic 0, 128–132 (1967).

  59. Qu, Y. et al. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc. Natl Acad. Sci. USA 112, 6224–6229 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winzer, T. et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336, 1704–1708 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Luo, Y., Enghiad, B. & Zhao, H. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Nat. Prod. Rep. 33, 174–182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, M. E., DeLoache, W. C., Cervantes, B. & Dueber, J. E. A Highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 4, 975–986 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Ryan, O. W., Poddar, S. & Cate, J. H. D. CRISPR–Cas9 genome engineering in Saccharomyces cerevisiae cells. Cold Spring Harb. Protoc. 2016, https://doi.org/10.1101/pdb.prot086827 (2016).

  64. Jeschek, M., Gerngross, D. & Panke, S. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Nat. Commun. 7, 11163 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, Y. & Smolke, C. D. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat. Commun. 7, 12137 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trenchard, I. J. & Smolke, C. D. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab. Eng. 30, 96–104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fossati, E. et al. Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat. Commun. 5, 3283 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Chao, R., Mishra, S., Si, T. & Zhao, H. Engineering biological systems using automated biofoundries. Metab. Eng. 42, 98–108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carbonell, P. et al. An automated design-build-test-learn pipeline for enhanced microbial production of fine chemicals. Commun. Biol. 1, 66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thodey, K., Galanie, S. & Smolke, C. D. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10, 837–844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Sachdeva, G., Garg, A., Godding, D., Way, J. C. & Silver, P. A. In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res. 42, 9493–9503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Denby, C. M. et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9, 965 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zeymer, C. & Hilvert, D. Directed evolution of protein catalysts. Annu. Rev. Biochem. 87, 131–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Katsuyama, Y., Funa, N., Miyahisa, I. & Horinouchi, S. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14, 613–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Hawkins, K. M. & Smolke, C. D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat. Chem. Biol. 4, 564–573 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruff, B. M., Bräse, S. & O’Connor, S. E. Biocatalytic production of tetrahydroisoquinolines. Tetrahedron Lett. 53, 1071–1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McCoy, E. & O’Connor, S. E. Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. J. Am. Chem. Soc. 128, 14276–14277 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Valliere, M. A. et al. A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat. Commun. 10, 565 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chemler, J. A., Lim, C. G., Daiss, J. L. & Koffas, M. A. G. A versatile microbial system for biosynthesis of novel polyphenols with altered estrogen receptor binding activity. Chem. Biol. 17, 392–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Herrera-Rodriguez, L. N., Khan, F., Robins, K. T. & Meyer, H.-P. Perspectives on biotechnological halogenation Part I: Halogenated products and enzymatic halogenation. Chem. Today 29, 31–33 (2011).

    CAS  Google Scholar 

  82. Grewal, P. S., Modavi, C., Russ, Z. N., Harris, N. C. & Dueber, J. E. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab. Eng. 45, 180–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Kashkooli, A. B., van der Krol, A., Rabe, P., Dickschat, J. S. & Bouwmeester, H. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab. Eng. 54, 12–23 (2019).

    Article  CAS  Google Scholar 

  84. Sánchez, C. et al. The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem. Biol. 9, 519–531 (2002).

    Article  PubMed  Google Scholar 

  85. Fasan, R., Chen, M. M., Crook, N. C. & Arnold, F. H. Engineered alkane-hydroxylating cytochrome P450BM3 exhibiting nativelike catalytic properties. Angew. Chem. Int. Ed. 46, 8414–8418 (2007).

    Article  CAS  Google Scholar 

  86. Payne, J. T., Poor, C. B. & Lewis, J. C. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angew. Chem. Int. Ed. Engl. 54, 4226–4230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Morita, H. et al. Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase. Proc. Natl Acad. Sci. USA 108, 13504–13509 (2011).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  89. Wanibuchi, K., Morita, H., Noguchi, H. & Abe, I. Enzymatic formation of an aromatic dodecaketide by engineered plant polyketide synthase. Bioorg. Med. Chem. Lett. 21, 2083–2086 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Bhan, N., Cress, B. F., Linhardt, R. J. & Koffas, M. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase. Biochimie 115, 136–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Bhan, N. et al. Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase. Protein Sci. 24, 167–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Ehrenworth, A. M. & Peralta-Yahya, P. Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat. Chem. Biol. 13, 249–258 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Deb Roy, A., Grüschow, S., Cairns, N. & Goss, R. J. M. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J. Am. Chem. Soc. 132, 12243–12245 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Runguphan, W., Qu, X. & O’Connor, S. E. Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468, 461–464 (2010). This paper is an example of unnatural PNP production via novel enzyme incorporation into the native plant producer, demonstrating that chlorinated precursor metabolites can transit through a biosynthetic pathway to the terminal products.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Glenn, W. S., Nims, E. & O’Connor, S. E. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. J. Am. Chem. Soc. 133, 19346–19349 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, S. et al. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab. Eng. 29, 153–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Townshend, B., Kennedy, A. B., Xiang, J. S. & Smolke, C. D. High-throughput cellular RNA device engineering. Nat. Methods 12, 989–994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feng, J. et al. A general strategy to construct small molecule biosensors in eukaryotes. Elife 4, e10606 (2015).

  99. Abatemarco, J. et al. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nat. Commun. 8, 332 (2017).

  100. Michener, J. K. & Smolke, C. D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab. Eng. 14, 306–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Raman, S., Rogers, J. K., Taylor, N. D. & Church, G. M. Evolution-guided optimization of biosynthetic pathways. Proc. Natl Acad. Sci. USA 111, 17803–17808 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsumura, E. et al. Microbial production of novel sulphated alkaloids for drug discovery. Sci. Rep. 8, 7980 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Rodriguez, A. et al. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 13, 126 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Qin, J. et al. Modular pathway rewiring of Saccharomyces cerevisiae enables high-narilevel production of L-ornithine. Nat. Commun. 6, 8224 (2015).

    Article  PubMed  Google Scholar 


Page 2

Which option is not typically a product of biosynthesis?

  1. aExamples of engineered strains producing different compounds or compound classes that can be used as platform strains for the production of diverse downstream compounds. Yellow, core metabolite platform; blue, secondary metabolite platform