What is the challenges and opportunities of infectious diseases controlling in 21st century

  1. Roeder, P., Mariner, J. & Kock, R. Rinderpest: the veterinary perspective on eradication. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120139 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, P. & Shi, Z.-L. SARS-CoV-2 spillover events. Science 371, 120–122 (2021).

    CAS  PubMed  Google Scholar 

  5. Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brashares, J. S. et al. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    CAS  PubMed  Google Scholar 

  7. Parashar, U. D. et al. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah Virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J. Infect. Dis. 181, 1755–1759 (2000).

    CAS  PubMed  Google Scholar 

  8. Field, H. et al. The natural history of Hendra and Nipah viruses. Microbes Infect. 3, 307–314 (2001).

    CAS  PubMed  Google Scholar 

  9. Pitzer, V. E. et al. High turnover drives prolonged persistence of influenza in managed pig herds. J. R. Soc. Interface 13, 20160138 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van Boeckel, T. et al. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Int. J. Infect. Dis. 101, 19 (2020).

    Google Scholar 

  12. Rimoin, A. W. et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl Acad. Sci. USA 107, 16262–16267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Aw, D., Silva, A. B. & Palmer, D. B. Immunosenescence: emerging challenges for an ageing population. Immunology 120, 435–446 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nikolich-Žugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    PubMed  Google Scholar 

  15. Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    PubMed  Google Scholar 

  16. Talisuna, A. O., Bloland, P. & D’Alessandro, U. History, dynamics, and public health importance of malaria parasite resistance. Clin. Microbiol. Rev. 17, 235–254 (2004).

    PubMed  PubMed Central  Google Scholar 

  17. Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Patz, J. A., Epstein, P. R., Burke, T. A. & Balbus, J. M. Global climate change and emerging infectious diseases. JAMA 275, 217–223 (1996).

    CAS  PubMed  Google Scholar 

  19. Martin, G. et al. Climate change could increase the geographic extent of Hendra virus spillover risk. Ecohealth 15, 509–525 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Yuen, K. Y. et al. Hendra virus: epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 12, 100207 (2021). Martin et al. (2018) and Yuen et al. (2021) detail the link between climate change and recent Hendra virus spillover.

    PubMed  Google Scholar 

  21. Brook, C. E. et al. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. eLife 9, e48401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st century. Trop. Med. Health 39, S3–S11 (2011).

    Google Scholar 

  23. Li, Y. et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl. Trop. Dis. 8, e3301 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Rose, N. H. et al. Climate and Urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570–3579.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tatem, A. J., Gething, P. W., Smith, D. L. & Hay, S. I. Urbanization and the global malaria recession. Malar. J. 12, 133 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Mahmud, A. S., Metcalf, C. J. E. & Grenfell, B. T. Comparative dynamics, seasonality in transmission, and predictability of childhood infections in Mexico. Epidemiol. Infect. 145, 607–625 (2017).

    CAS  PubMed  Google Scholar 

  27. Salje, H. et al. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc. Natl Acad. Sci. USA 113, 13420–13425 (2016). This article shows how interactions between the characteristics of an individual and that individual’s environment contribute to disease dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pitzer, V. E. et al. Demographic variability, vaccination, and the spatiotemporal dynamics of rotavirus epidemics. Science 325, 290–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Earn, D. J., Rohani, P., Bolker, B. M. & Grenfell, B. T. A simple model for complex dynamical transitions in epidemics. Science 287, 667–670 (2000).

    CAS  PubMed  Google Scholar 

  30. Ferrari, M. J., Grenfell, B. T. & Strebel, P. M. Think globally, act locally: the role of local demographics and vaccination coverage in the dynamic response of measles infection to control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thompson, C. N. et al. The impact of environmental and climatic variation on the spatiotemporal trends of hospitalized pediatric diarrhea in Ho Chi Minh City, Vietnam. Health Place. 35, 147–154 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Baker, R. E. et al. Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat. Commun. 10, 5512 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wesolowski, A. et al. Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics. Nat. Commun. 8, 2069 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Graham, M. et al. Measles and the canonical path to elimination. Science 364, 584–587 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cummings, D. A. T. et al. The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med. 6, e1000139 (2009).

    PubMed  PubMed Central  Google Scholar 

  36. Metcalf, C. J. E. et al. Structured models of infectious disease: inference with discrete data. Theor. Popul. Biol. 82, 275–282 (2012).

    CAS  PubMed  Google Scholar 

  37. Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2, e13–e22 (2021).

    CAS  PubMed  Google Scholar 

  38. Dalziel, B. D. et al. Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science 362, 75–79 (2018). This study describes distinct patterns of influenza outbreaks in urban locations.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rader, B. et al. Crowding and the shape of COVID-19 epidemics. Nat. Med. 26, 1829–1834 (2020).

    CAS  PubMed  Google Scholar 

  40. Kwan, C. K. & Ernst, J. D. HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev. 24, 351–376 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Nkuo-Akenji, T. K., Chi, P. C., Cho, J. F., Ndamukong, K. K. J. & Sumbele, I. Malaria and helminth co-infection in children living in a malaria endemic setting of mount Cameroon and predictors of anemia. J. Parasitol. 92, 1191–1195 (2006).

    PubMed  Google Scholar 

  42. Hartmann, W. et al. Helminth infections suppress the efficacy of vaccination against seasonal influenza. Cell Rep. 29, 2243–2256.e4 (2019).

    CAS  PubMed  Google Scholar 

  43. Mahmud, A. S., Martinez, P. P., He, J. & Baker, R. E. The impact of climate change on vaccine-preventable diseases: insights from current research and new directions. Curr. Env. Health Rep. 7, 384–391 (2020).

    Google Scholar 

  44. Baker, R. E., Yang, W., Vecchi, G. A., Metcalf, C. J. E. & Grenfell, B. T. Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks. Nat. Commun. 12, 846 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tamerius, J. D. et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 9, e1003194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Viboud, C., Alonso, W. J. & Simonsen, L. Influenza in tropical regions. PLoS Med. 3, e89 (2006).

    PubMed  PubMed Central  Google Scholar 

  47. Baker, R. E. et al. Implications of climatic and demographic change for seasonal influenza dynamics and evolution. Preprint at medRxiv https://doi.org/10.1101/2021.02.11.21251601 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ciencewicki, J. & Jaspers, I. Air pollution and respiratory viral infection. Inhal. Toxicol. 19, 1135–1146 (2007).

    CAS  PubMed  Google Scholar 

  49. Bell, M. L. & Ebisu, K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ. Health Perspect. 120, 1699–1704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gorris, M. E., Treseder, K. K., Zender, C. S. & Randerson, J. T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. Geohealth 3, 308–327 (2019). This study is one of the first to describe the link between climate change and valley fever.

    PubMed  PubMed Central  Google Scholar 

  51. Du, H. et al. Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 16, e1008921 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e01397 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996).

    CAS  PubMed  Google Scholar 

  54. Koelle, K., Rodó, X., Pascual, M., Yunus, M. & Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005). This study highlights the importance of the interplay between intrinsic (temporary immunity) and extrinsic (climatic variability) factors in determining disease dynamics.

    CAS  PubMed  Google Scholar 

  55. Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Rocklöv, J. & Dubrow, R. Author correction: climate change: an enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 695 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Brady, O. J. et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit. Vectors 7, 338 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife 4, e08347 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Hales, S., de Wet, N., Maindonald, J. & Woodward, A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360, 830–834 (2002).

    PubMed  Google Scholar 

  60. Wagner, C. E. et al. Climatological, virological and sociological drivers of current and projected dengue fever outbreak dynamics in Sri Lanka. J. R. Soc. Interface 17, 20200075 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Couper, L. I., MacDonald, A. J. & Mordecai, E. A. Impact of prior and projected climate change on US Lyme disease incidence. Glob. Chang. Biol. 27, 738–754 (2021).

    PubMed  Google Scholar 

  62. Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Chang. Biol. 27, 84–93 (2021).

    PubMed  Google Scholar 

  63. Ryan, S. J., Lippi, C. A. & Zermoglio, F. Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malar. J. 19, 170 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Li, X. et al. Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study. Lancet 397, 398–408 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Mensah, K. et al. Seasonal gaps in measles vaccination coverage in Madagascar. Vaccine 37, 2511–2519 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Metcalf, C. J. E. et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet 388, 728–730 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Crépey, P. & Barthélemy, M. Detecting robust patterns in the spread of epidemics: a case study of influenza in the United States and France. Am. J. Epidemiol. 166, 1244–1251 (2007).

    PubMed  Google Scholar 

  68. Brownstein, J. S., Wolfe, C. J. & Mandl, K. D. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Med. 3, e401 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. Tayoun, A. A. et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci. Rep. 10, 17720 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into northern California. Science 369, 582–587 (2020).

    CAS  PubMed  Google Scholar 

  71. Candido, D. S. et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 369, 1255–1260 (2020).

    CAS  PubMed  Google Scholar 

  72. Lounibos, L. P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).

    CAS  PubMed  Google Scholar 

  73. Tatem, A. J., Hay, S. I. & Rogers, D. J. Global traffic and disease vector dispersal. Proc. Natl Acad. Sci. USA 103, 6242–6247 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Killeen, G. F., Fillinger, U., Kiche, I., Gouagna, L. C. & Knols, B. G. J. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect. Dis. 2, 618–627 (2002).

    PubMed  Google Scholar 

  75. Tatem, A. J. et al. Air travel and vector-borne disease movement. Parasitology 139, 1816–1830 (2012).

    CAS  PubMed  Google Scholar 

  76. Huang, Z. & Tatem, A. J. Global malaria connectivity through air travel. Malar. J. 12, 269 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Purse, B. V., Rogers, D. J., Mellor, P. S., Baylis, M. & Mertens, P. P. C. Bluetongue virus and climate change. in Bluetongue (eds Mellor, P. S., Baylis, M. & Mertens, P. P. C.) 343–364 (Elsevier, 2009). This study describes the role of climate change in the geographical expansion of bluetongue epidemics.

  78. Massad, E. et al. On the origin and timing of Zika virus introduction in Brazil. Epidemiol. Infect. 145, 2303–2312 (2017).

    CAS  PubMed  Google Scholar 

  79. Kilpatrick, A. M. Globalization, land use, and the invasion of West Nile virus. Science 334, 323–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mordecai, E. A., Caldwell, J. M. & Grossman, M. K. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. United Nations. World Population Prospects 2019 (2019).

  82. Wrathall, D. J. et al. Meeting the looming policy challenge of sea-level change and human migration. Nat. Clim. Chang. 9, 898–901 (2019).

    Google Scholar 

  83. Gushulak, B. D. & MacPherson, D. W. Globalization of infectious diseases: the impact of migration. Clin. Infect. Dis. 38, 1742–1748 (2004).

    PubMed  Google Scholar 

  84. Soto, S. M. Human migration and infectious diseases. Clin. Microbiol. Infect. 15 (Suppl. 1), 26–28 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Monge-Maillo, B. et al. Imported infectious diseases in mobile populations, Spain. Emerg. Infect. Dis. 15, 1745–1752 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Castelli, F. & Sulis, G. Migration and infectious diseases. Clin. Microbiol. Infect. 23, 283–289 (2017).

    CAS  PubMed  Google Scholar 

  87. Bhatia, A. et al. The Rohingya in Cox’s Bazar: when the stateless seek refuge. Health Hum. Rights 20, 105–122 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Chin, T., Buckee, C. O. & Mahmud, A. S. Quantifying the success of measles vaccination campaigns in the Rohingya refugee camps. Epidemics 30, 100385 (2020).

    PubMed  PubMed Central  Google Scholar 

  89. Wesolowski, A., Buckee, C. O., Engø-Monsen, K. & Metcalf, C. J. E. Connecting mobility to infectious diseases: the promise and limits of mobile phone data. J. Infect. Dis. 214, S414–S420 (2016).

    PubMed  PubMed Central  Google Scholar 

  90. Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 589, 82–87 (2021). This study uses high-resolution mobility data to explain inequities in COVID-19 burden.

    CAS  PubMed  Google Scholar 

  91. Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mahmud, A. S. et al. Megacities as drivers of national outbreaks: The 2017 chikungunya outbreak in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 15, e0009106 (2021).

    PubMed  PubMed Central  Google Scholar 

  93. Buckee, C. O. et al. Aggregated mobility data could help fight COVID-19. Science 368, 145–146 (2020).

    PubMed  Google Scholar 

  94. Perrings, C. Options for managing the infectious animal and plant disease risks of international trade. Food Security 8, 27–35 (2016).

    Google Scholar 

  95. Smith, K. F. et al. Ecology. Reducing the risks of the wildlife trade. Science 324, 594–595 (2009).

    CAS  PubMed  Google Scholar 

  96. Perrings, C., Levin, S. & Daszak, P. The economics of infectious disease, trade and pandemic risk. Ecohealth 15, 241–243 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Pavlin, B. I., Schloegel, L. M. & Daszak, P. Risk of importing zoonotic diseases through wildlife trade, United States. Emerg. Infect. Dis. J. 15, 1721 (2009).

    Google Scholar 

  98. Santini, A., Liebhold, A., Migliorini, D. & Woodward, S. Tracing the role of human civilization in the globalization of plant pathogens. ISME J. 12, 647–652 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Levine, J. M. & D’Antonio, C. M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17, 322–326 (2003). This article gives a quantitative forecast of the impact of international trade on the introduction of plant pathogens.

    Google Scholar 

  100. Parker, I. M. & Gilbert, G. S. The evolutionary ecology of novel plant-pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 35, 675–700 (2004).

    Google Scholar 

  101. Landa, B. B. et al. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01521-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Frisullo, S., Camele, I., Agosteo, G. E., Boscia, D. & Martelli, G. P. Brief historical account of olive leaf scorch (‘brusca’) in the Salento Peninsula of Italy and state-of-the-art of the olive quick decline syndrome. J. Plant. Pathol. 96, 441–449 (2014).

    Google Scholar 

  103. Coutinho, T. A., Wingfield, M. J., Alfenas, A. C. & Crous, P. W. Eucalyptus rust: a disease with the potential for serious international implications. Plant. Dis. 82, 819–825 (1998).

    CAS  PubMed  Google Scholar 

  104. Shoemaker, T. et al. Genetic analysis of viruses associated with emergence of Rift Valley fever in Saudi Arabia and Yemen, 2000-01. Emerg. Infect. Dis. 8, 1415–1420 (2002).

    PubMed  PubMed Central  Google Scholar 

  105. Lancelot, R. et al. Drivers of Rift Valley fever epidemics in Madagascar. Proc. Natl Acad. Sci. USA 114, 938–943 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J. M. & Pfeiffer, D. U. Epidemiology of African swine fever virus. Virus Res. 173, 191–197 (2013).

    CAS  PubMed  Google Scholar 

  107. Rowlands, R. J. et al. African swine fever virus isolate, Georgia, 2007. Emerg. Infect. Dis. 14, 1870–1874 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mighell, E. & Ward, M. P. African swine fever spread across Asia, 2018-2019. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14039 (2021).

    Article  PubMed  Google Scholar 

  109. European Food Safety Authority (EFSA). et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J. 19, e06572 (2021).

    Google Scholar 

  110. Abanto, M., Gavilan, R. G., Baker-Austin, C., Gonzalez-Escalona, N. & Martinez-Urtaza, J. Global expansion of Pacific Northwest Vibrio parahaemolyticus sequence type 36. Emerg. Infect. Dis. 26, 323–326 (2020).

    PubMed  PubMed Central  Google Scholar 

  111. Martinez-Urtaza, J. et al. Genomic variation and evolution of ´Vibrio parahaemolyticus ST36 over the course of a transcontinental epidemic expansion. mBio https://doi.org/10.1128/mBio.01425-17 (2017). Abanto et al. (2020) and Martinez-Urtaza et al. (2017) discuss how global trade and climate change have led to the expansion of V. parahaemolyticus.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fisher, M. C. & Garner, T. W. J. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    CAS  PubMed  Google Scholar 

  113. Knight-Jones, T. J. D. & Rushton, J. The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Prev. Vet. Med. 112, 161–173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Robinson, T. P. et al. Antibiotic resistance: mitigation opportunities in livestock sector development. Animal 11, 1–3 (2017).

    CAS  PubMed  Google Scholar 

  115. Pulliam, J. R. C. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).

    PubMed  Google Scholar 

  116. Rambaut, A. et al. The genomic and epidemiological dynamics of human influenza A virus. Nature 453, 615–619 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Olsen, B. et al. Global patterns of influenza a virus in wild birds. Science 312, 384–388 (2006).

    CAS  PubMed  Google Scholar 

  118. Li, Y. et al. Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. J. Virol. 84, 8389–8397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Food and Agriculture Organization of the United Nations. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production. (Food and Agriculture Organization, 2018).

  120. Metcalf, C. J. E. et al. Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiol. Infect. 143, 1457–1466 (2015).

    CAS  PubMed  Google Scholar 

  121. Hotez, P. J. Globalists versus nationalists: bridging the divide through blue marble health. PLoS Negl. Trop. Dis. 13, e0007156 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Antràs, P. De-globalisation? Global value chains in the post-COVID-19 age. National Bureau of Economic Research https://www.nber.org/papers/w28115 (2020).

  123. Burton, D. R. & Topol, E. J. Variant-proof vaccines — invest now for the next pandemic. Nature https://doi.org/10.1038/d41586-021-00340-4 (2021).

    Article  PubMed  Google Scholar 

  124. Hay, J. A. et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science https://doi.org/10.1126/science.abh0635 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wagner, D. M. et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect. Dis. 14, 319–326 (2014).

    PubMed  Google Scholar 

  126. Alfani, G. & Murphy, T. E. Plague and lethal epidemics in the pre-industrial world. J. Econ. Hist. 77, 314–343 (2017).

    Google Scholar 

  127. Harper, K. Pandemics and passages to late antiquity: rethinking the plague of c. 249–270 described by Cyprian. J. Rom. Archaeol. 28, 223–260 (2015).

    Google Scholar 

  128. Duncan-Jones, R. P. The impact of the Antonine plague. J. Rom. Archaeol. 9, 108–136 (1996).

    Google Scholar 

  129. Molina-Cruz, A., Zilversmit, M. M., Neafsey, D. E., Hartl, D. L. & Barillas-Mury, C. Mosquito vectors and the globalization of Plasmodium falciparum malaria. Annu. Rev. Genet. 50, 447–465 (2016).

    CAS  PubMed  Google Scholar 

  130. Guan, Y. et al. Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet 363, 99–104 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tatem, A. J. Mapping population and pathogen movements. Int. Health 6, 5–11 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Gao, J. Global 1-km downscaled population base year and projection grids based on the shared socioeconomic pathways, revision 01. NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/q7z9-9r69 (2020).

    Article  Google Scholar 

  133. Miller, I. F. & Metcalf, C. J. E. Evolving resistance to pathogens. Science 363, 1277–1278 (2019).

    CAS  PubMed  Google Scholar 

  134. Park, M., Loverdo, C., Schreiber, S. J. & Lloyd-Smith, J. O. Multiple scales of selection influence the evolutionary emergence of novel pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120333 (2013).

    PubMed  PubMed Central  Google Scholar 

  135. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277–282 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhan, J., Thrall, P. H., Papaïx, J., Xie, L. & Burdon, J. J. Playing on a pathogen’s weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53, 19–43 (2015).

    CAS  PubMed  Google Scholar 

  137. Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLoS Pathog. 16, e1008758 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).

    CAS  PubMed  Google Scholar 

  139. Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).

    PubMed  Google Scholar 

  140. Gilbert, G. S. & Webb, C. O. Phylogenetic signal in plant pathogen–host range. Proc. Natl Acad. Sci. USA 104, 4979–4983 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Gibson, A. K. & Nguyen, A. E. Does genetic diversity protect host populations from parasites? A meta-analysis across natural and agricultural systems. Evol. Lett. 5, 16–32 (2021).

    PubMed  Google Scholar 

  142. Rigling, D. & Prospero, S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol. Plant. Pathol. 19, 7–20 (2018).

    CAS  PubMed  Google Scholar 

  143. Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751–756 (2001).

    CAS  PubMed  Google Scholar 

  144. Miller, I. F. & Metcalf, C. J. Vaccine-driven virulence evolution: consequences of unbalanced reductions in mortality and transmission and implications for pertussis vaccines. J. R. Soc. Interface 16, 20190642 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an infectious disease outbreak controllable. Proc. Natl Acad. Sci. USA 101, 6146–6151 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bar-On, Y. M., Flamholz, A., Phillips, R. & Milo, R. Science forum: SARS-CoV-2 (COVID-19) by the numbers. eLife 9, e57309 (2020).

    PubMed  PubMed Central  Google Scholar 

  147. Hollingsworth, T. D., Ferguson, N. M. & Anderson, R. M. Will travel restrictions control the international spread of pandemic influenza? Nat. Med. 12, 497–499 (2006).

    CAS  PubMed  Google Scholar 

  148. Dhillon, R. S., Srikrishna, D. & Sachs, J. Controlling Ebola: next steps. Lancet 384, 1409–1411 (2014).

    PubMed  Google Scholar 

  149. Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Health 8, e488–e496 (2020).

    PubMed  PubMed Central  Google Scholar 

  150. Xu, G. J. et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015). This study presents a highly multiplexed, peptide-level serological assay to characterize prior exposure to all known viruses.

    PubMed  PubMed Central  Google Scholar 

  151. Takahashi, S., Greenhouse, B. & Rodríguez-Barraquer, I. Are SARS-CoV-2 seroprevalence estimates biased? J. Infect. Dis. https://doi.org/10.1093/infdis/jiaa523 (2020).

    Article  PubMed  Google Scholar 

  152. The Lancet. Genomic sequencing in pandemics. Lancet 397, 445 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. COVID-19 Genomics UK (COG-UK) . An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe 1, e99–e100 (2020).

    Google Scholar 

  154. Inzaule, S. C., Tessema, S. K., Kebede, Y. & Ouma, A. E. O. Genomic-informed pathogen surveillance in Africa: opportunities and challenges. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30939-7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    CAS  PubMed  Google Scholar 

  156. Holmes, E. C. What can we predict about viral evolution and emergence? Curr. Opin. Virol. 3, 180–184 (2013).

    PubMed  Google Scholar 

  157. Carlson, C. J. From PREDICT to prevention, one pandemic later. Lancet Microbe 1, e6–e7 (2020).

    PubMed  PubMed Central  Google Scholar 


Page 2

a | Examples of epidemic periods associated with different eras of human transportation (land, maritime and air travel) are shown. Overland trade networks and war campaigns are thought to have contributed to multiple epidemics in the Mediterranean in late classical antiquity (green), beginning with the Antonine plague, which reportedly claimed the life of the Roman emperor Lucius Verus125,126,127,128. Maritime transportation (red and grey) leading to European contact with the Americas and the subsequent Atlantic slave trade resulted in the importation of Plasmodium falciparum malaria and novel viral pathogens129. In modern times, air travel (purple) resulted in the importation of severe acute respiratory syndrome (SARS) coronavirus to 27 countries before transmission was halted130. b | In recent years, increases in air travel, trade and urbanization at global (left) and regional (right) scales have accelerated, indicating ever more frequent transport of people and goods between growing urban areas (source World Bank). c | Log deaths from major epidemics in the twenty-first century (source World Health Organization). d | Disability-adjusted life years lost from infectious diseases (source Our World in Data). MERS, Middle East respiratory syndrome; NTD, neglected tropical disease.